Saline-dependent regulation of manganese peroxidase genes in the hypersaline-tolerant white rot fungus Phlebia sp. strain MG-60.

نویسندگان

  • Ichiro Kamei
  • Chieko Daikoku
  • Yuji Tsutsumi
  • Ryuichiro Kondo
چکیده

The expression pattern of manganese peroxidases (MnPs) in nitrogen-limited cultures of the saline-tolerant fungus Phlebia sp. strain MG-60 is differentially regulated under hypersaline conditions at the mRNA level. When MG-60 was cultured in nitrogen-limited medium (LNM) containing 3% (wt/vol) sea salts (LN-SSM), higher activity of MnPs was observed than that observed in normal medium (LNM). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated that two MnP isoenzymes were de novo synthesized in the culture of LN-SSM. Three MnP-encoding genes (MGmnp1, MGmnp2, and MGmnp3) were isolated by reverse transcription (RT)-PCR and rapid amplification of cDNA ends PCR techniques. The corresponding isozymes were identified by peptide mass fingerprinting analysis. MnP isozymes encoded by MGmnp2 and MGmnp3 were observed mainly in LN-SSM. Real-time RT-PCR analysis revealed high levels of MGmnp2 and MGmnp3 transcripts in LN-SSM 48 h after the addition of 2% NaCl. The induction of MnP production and the accumulation of gene transcripts by saline were well correlated in the presence of Mn(2+). However, in the absence of Mn(2+), there was no clear correlation between mnp transcripts levels and MnP activity, suggesting posttranscriptional regulation by Mn(2+).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of a manganese peroxidase isozyme 2 transgene in the ethanologenic white rot fungus Phlebia sp. strain MG-60

BACKGROUND The white-rot fungus Phlebia sp. strain MG-60 was proposed as a candidate for integrated fungal fermentation process (IFFP), which unifies aerobic delignification and semi-aerobic consolidated biological processing by a single microorganism based on its ability to efficiently degrade lignin and ferment the sugars from cellulose. To improve IFFP, the development of a molecular breedin...

متن کامل

Stimulation of Ligninolytic Peroxidase Activity by Nitrogen Nutrients in the White Rot Fungus Bjerkandera sp. Strain BOS55.

Bjerkandera sp. strain BOS55, a newly isolated wild-type white rot fungus, produced lignin peroxidase (LiP) in nitrogen (N)-sufficient glucose-peptone medium, whereas no LiP was detectable in N-limited medium. The production of LiP was induced by the peptide-containing components of this medium and also by soy bean protein. Furthermore, the production of manganese-dependent peroxidase was stimu...

متن کامل

Molecular characterization of the basidiomycete isolate Nematoloma frowardii b19 and its manganese peroxidase places the fungus in the corticioid genus Phlebia.

The basidiomycete isolate b19, originally identified by morphological characteristics of the fruiting body as Nematoloma frowardii, efficiently produces manganese peroxidase (MNP) and is used for degradation of natural, persistent aromatic polymers (lignin, humic acids and brown coal components). The N. frowardii MNP has shown good activity in conversion of xenobiotic compounds such as polycycl...

متن کامل

Manganese Is Not Required for Biobleaching of Oxygen-Delignified Kraft Pulp by the White Rot Fungus Bjerkandera sp. Strain BOS55.

The white rot fungus Bjerkandera sp. strain BOS55 extensively delignified and bleached oxygen-delignified eucalyptus kraft pulp handsheets. Biologically mediated brightness gains of up to 14 ISO (International Standards Organization units) were obtained, providing high final brightness values of up to 80% ISO. In nitrogen-limited cultures (2.2 mM N), manganese (Mn) greatly improved manganese-de...

متن کامل

Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi.

Two families of peroxidases-lignin peroxidase (LiP) and manganese-dependent lignin peroxidase (MnP)-are formed by the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium and other white rot fungi. Isoenzymes of these enzyme families carry out reactions important to the biodegradation of lignin. This research investigated the regulation of LiP and MnP production by Mn(II). In li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 74 9  شماره 

صفحات  -

تاریخ انتشار 2008